AI processing is appearing everywhere, running on just about any kind of infrastructure, from the cloud to the edge to end-user devices. Although we might think AI processing requires massive centralized resources, this is not necessarily the case. Deep learning training might need centralized resources, but the topic goes way beyond this, and it is likely that most production applications will use CPUs to process data in-place. Simpler machine learning applications don’t need specialized accelerators and Intel has been building specialized hardware support into their processors for a decade. DL Boost on Xeon is competitive with discrete GPUs thanks to specialized instructions and optimized software libraries.
Three Questions
- How long will it take for a conversational AI to pass the Turing test and fool an average person?
- Is it possible to create a truly unbiased AI?
- How small can ML get? Will we have ML-powered household appliances? Toys? Disposable devices?
Guests and Hosts
Eric Gardner, Director of AI Marketing at Intel . Connect with Eric on LinkedIn or on Twitter @DataEric .
Chris Grundemann is the Managing Director at Grundemann Technology Solutions. You can connect with Chris on LinkedIn and on X/Twitter or visit his website to learn more.
Stephen Foskett, Organizer of the Tech Field Day Event Series, part of The Futurum Group. Find Stephen’s writing at GestaltIT.com, on Twitter at @SFoskett, or on Mastodon at @[email protected].